A SESQUITERPENE EVONINOATE ALKALOID FROM MAYTENUS GUIANENSIS

JOSÉ R. DE SOUSA, JOSÉ A. PINHEIRO, ELAINE F. RIBEIRO, EDWARD DE SOUZA and J. GUILHERME S. MAIA*

Departamento de Química da Universidade Federal de Minas Gerais, 30.000-Belo Horizonte, MG, Brazil; *Instituto Nacional de Pesquisas da Amazônia, CNPq, 69.000-Manaus, Am, Brazil

(Received 5 July 1985)

Key Word Index-Maytenus gulanensis; Celastraceae; chichuá; root; alkaloid; mayteine.

Abstract—The trunk wood and root of *Maytenus guianensis* contain 4'-0-methyl-(-)-epigallocatechin, proanthocyanidin A, dulcitol, sitosterol, β -sitostenone and friedelan-3,7-dione. The trunk wood also furnished N_iN -dimethylserine. A new sesquiterpene alkaloid, named mayteine, was isolated from the root.

INTRODUCTION

Various sesquiterpene alkaloids have been isolated from members of Celastraceae. Thus euonymine (1), evonine (4) and wilfordine (2) were isolated from the fruits of *Euonymus alatus* [1]. Compounds 1 and 4 are sesquiterpene polyesters of the evoninic acid, and compound 2 is a polyester of the wilfordic acid.

In the present study we describe the isolation and structural determination of mayteine, a new sesquiterpene alkaloid from the root of Maytenus guianensis, a celastraceous tree from the Manaus region of Amazonas State, Brazil, known as 'chichuá'. Mayteine (3) was recognized to be a benzoyleuonymine by comparison of its ¹H NMR data with those of euonymine (1) [2], evonine (4) [3] and wilfordine (2) [1].

RESULTS AND DISCUSSION

The structural proposal for mayteine (3) with a characteristic evoninoate moiety is consistent with the spectroscopic properties of this alkaloid. The IR, UV and ¹H NMR spectra indicated an aromatic partial structure. The IR spectrum contained bands assignable to a monosubstituted benzene ring (710 cm⁻¹), hydroxyl (3490 cm⁻¹) and an ester carbonyl (1750–1730 cm⁻¹, br). The UV absortion spectra of 3 in ethanol $[\lambda_{max} 269 (\log \varepsilon 3.79)$ and 233 nm $(\log \varepsilon 4.30)]$ as well as in 1% hydrochloric acid $[\lambda_{max} 269 (\log \varepsilon 3.92)$ and 235 nm $(\log \varepsilon 4.20)]$ are almost identical with those of wilfordine (2) [4] in the two respective solvents from 220 to 300 nm, thereby demonstrating the similarity of the chemical structure of these two compounds.

R¹ R²
1 Ac
$$\beta$$
-OAc, α -H (euonymine)
3 COPh β -OAc, α -H (mayteine)

Ac

2 (wilfordine)

(evonine)

Short Reports 1777

The mass spectral fragmentation pathways of 3 and evonine (4) [5] correspond well with each other. However, in addition to the fragments at m/z 206 (54%) and 107 (93%) from the evoninoate moiety, the spectrum of 3 exhibited further peaks at m/z 105 (benzoyl, 100%), 866 $[M-H]^+$ (14%) and 867 $[M]^+$ (6%).

The ¹H NMR spectrum of 3 showed the presence of five acetate groups (3H each, s, δ 1.72, 2.12, 2.16, 2.22, 2.35), one benzoate (δ 7.85 dd, J = 8.0 and 1.5 Hz, 7.56 m, and 7.43 t, J = 8.0 Hz) and one hydroxyl group (δ 4.54, disappeared on addition of D₂O). ¹H NMR spectral data of 3, 1, 2 and 4 are listed in Table 1, which shows that these four compounds are closely related. The ¹H NMR spectra of 3 and 4 clearly showed that 3 was an evoninic acid derivative (cf. signals of H-4'-H-11', Table 1).

The substitution pattern of the sesquiterpene part of 3 was identified through ¹H NMR spectral comparison (CDCl₃) with 1 and 2 (Table 1). The signals of H-1, H-2, H-8 and H-11 in 3 were observed in a field region

significantly lower than that of the corresponding protons in 1, indicating that the benzoate group was located on one of the possible four positions, C-1, C-2, C-8 and C-11.

The following result from the ¹H NMR spectra is consistent with the position of the benzoate group at C-1. The signal due to H-1 appeared at δ 5.90 in 3, whereas the signal of H-1 in 2 was observed with a significant shift to a higher field (δ 5.75). Furthermore it was observed that the signals due to H-2 and H-3 in 3 appeared in a field region higher (δ 5.36 and 4.80, respectively) than those on wilfordine (2) (δ 5.49 and 5.08, respectively). This inference is consistent with the chemical shift values of methynes of three monobenzoates synthesized from 4 in which the acetyl group at C-1, C-2 and C-11 was substituted by a benzoyl group [δ 6.07 (H-1), 5.57 (H-2) and 4.99 s (H-11), respectively] [δ].

Couplings were confirmed by double resonance experiments at 400 MHz with spectrum expansion of the following protons: H-1, δ 5.90 (H-2, d, $J_{2,3} = 2.5$ Hz);

Table 1. 1H NMR spectral data*

н	1	2	3†	4
1	5.55	5.75	5.90	
	(d, 4.0)	(d, 3.0)	(d, 4.0)	
2	5.23	5.49	5.36	
	(dd, 4.0, 2.5)	(dd, 3.0, 3.0)	(dd, 4.0, 2.5)	
3	4.72	5.08	4.80	
	(d, 2.5)	(d, 3.0)	(d, 2.5)	
5	7.02	6.84	7.09	
	(d, 1.0)	(s)	(br s)	
6	2.33	2.39	2.37	
	(dd, 3.8, 1.0)	(d, 4.0)	$(br \ d, \ 4.0)$	
7	5.51	5.58	5.53	
	(dd, 6.2, 3.8)	(dd, 6.0, 4.0)	(dd, 6.0, 4.0)	
8	5.34	5.39	5.43	
	(d, 6.2)	(d, 6.0)	(d, 6.0)	
11	4.50-5.13	4.40-5.58	4.70-5.34	
	(ABq, 13.5)	(ABq, 14.0)	(ABq, 13.5)	
15	3.72	3.75	3.72	
	(d, 12.0)	(ABq, 12.0)	(d, 12.0)	
15	5.94	5.81	5.95	
	$(br \ d, 12.0)$,	(br d, 12.0)	
4′			8.10	8.07
			(dd, 8.0, 2.0)	(dd, 8.0, 2.0)
5′			7.28	7.25
			(dd, 8.0, 2.0)	(dd, 8.0, 2.0)
6′			8.73	8.69
			(dd, 4.5, 2.0)	(dd, 4.5, 2.0)
7′			4.54	~ 4.69
			(br)	$(J_{7,8}\neq 0)$
8′			2.60	2.58
			(q, 7.0)	(q, 7.0)
10′			1.41	1.41
			(d, 7.0)	(d, 7.0)
11'			1.22	1.22
			(d, 7.0)	(d, 7.0)

^{*}Chemical shifts (in δ values) relative to internal TMS. Multiplicities and coupling constants (Hz) are given in parentheses. Spectra were taken in CDCl₃ at 100 MHz (1), 60 MHz (2) and 400 MHz (3).

[†]The signals due to H-12 and H-14 appeared at 1.60 (d, 1.0) and 1.43 (s).

H-3, 4.80 (H-2, d, $J_{1,2}$ = 4.0 Hz; H-7, 5.53 (H-8, br s); H-15, 3.72 (H-15 at δ 5.95 s); H-11, 4.70 (H-11 at δ 5.34 s) and H-8', 2.60 (H-11's and H-7' perturbed).

It should be noted that the optical rotations of 3 $[\alpha]_D^{25}$ -9.36° (CHCl₃; c 0.47), 1 $[\alpha]_D^{20}$ -20° (CHCl₃; c 0.32) [2] and neoeuonymine $[\alpha]_D^{20}$ -11° (CHCl₃; c 0.49) [2] are closely related.

Therefore, we accept the structure 3 as the most probable for mayteine.

EXPERIMENTAL

All mps are uncorr. IR spectra were taken in KBr discs.

¹HNMR spectra were determined at 100 MHz, and at 400 MHz in the Institut d'Electronique Université Paris XI-Centre d'Orsay.

Root wood of M. guianensis Klotzch was reduced to powder (2 kg), exhaustively extracted with EtOH at room temp. and then extracted with the same solvent in a Soxhlet. The concd hot EtOH extract was filtered, affording dukcitol (3.2 g) (Schaefferia cuneifolia A. Gray, Celastraceae) [7], identified by direct comparison with authentic specimen.

The EtOH extract (248 g) obtained at room temp. was chromatographed on a silica gel column. The CHCl₃-MeOH (9:1) fraction was evapd and the residue, which gave a positive reaction with Dragendorff's reagent, was purified over a neutral alumina column with CHCl₃ to give mayteine (3) (0.81 g), a white amorphous solid, mp 172-175°. (Found: C, 59.38; H, 5.59; N, 1.40. C₄₃H₄₉NO₁₈ requires: C, 59.51; H, 5.69; N, 1.61%.) CHCl₃-MeOH (8:3) eluted 4'-O-methyl-(-)-epigallocatechin (0.93 g) and CHCl₃-MeOH (4:1) eluted proanthocyanidin A (0.20 g) (Maytenus rigida, Celastraceae) [8]; their identities were ascertained by IR, ¹H NMR, MS, mp and were also characterized as Me and acetyl derivatives.

Root bark was reduced to powder (1.76 kg) and extracted successively with n-hexane, which removed a mixture of sitosterol and β -sitostenone (0.24 g), and with EtOAc. The EtOAc extract (240 g) was chromatographed on a silica gel column. The n-hexane-C₆H₆ (2:3) fraction afforded 1.2 g of friedelan-3,7-dione (putranjivadione, Putranjiva roxburghii, Euphorbiaceae), which was identified by a combination of chemical and physical methods. White needles, mp 282-284° (C₆H₆-CHCl₃), lit. [9] mp 284-289° (CHCl₃-Me₂CO); IR ν_{max} cm⁻¹: 1720 (sh), 1710. MS m/z (rel. int.): 440 [M] * (100), 425 (21), 288 (7), 207 (17), 205 (54).

¹H NMR (60 MHz, CDCl₃); δ0.78, 0.87, 0.90, 0.97, 1.00, 1.05, 1.20, 1.30 (Me), 1.40-2.85 (CH₂, CH). Putranjivadione was converted to putranjivadiol (LiAlH₄), friedelan-3-ol-7-one (NaBH₄), friedelan-7-one (Huang-Minlon) and friedelan-7-ol, spectral data as required by lit. [9].

Trunk wood was reduced to powder (11 kg) and extracted with EtOH. The concd EtOH extract was filtered and the residue furnished N_sN_s -dimethylserine (2.3 g) by exhaustive extraction with hot MeOH. Amorphous solid, mp > 300°; MS m/z (rel. int.): 133 [M]* (40) (C₅H₁₁NO₅ by HRMS); ¹H NMR (60 MHz, TFA-D₂O): δ 3.00 (s, 3H), 3.10 (s, 3H), 3.85-4.20 (3H, m) and dulcitol (30 g). The mother liquor from the EtOH extract was evapd and the residue chromatographed on a silica gel column to afford sitosterol (0.24 g), 4'-O-methyl-(-)-epigallocatechin (12.0 g) and proanthocyanidin A (7.23 g). The EtOH bark wood extract (6.5 g) was also chromatographed on a silica gel column and afforded friedelan-3,7-dione (0.025 g).

Acknowledgements—The authors express their deep gratitude to Dr. D. S. Kan (Institut d'Electronique Université Paris XI) for ¹H NMR at 400 MHz, and to Dr. J. C. Tabet (Centre de Spectrometrie de Masse de Lyon) for MS.

REFERENCES

- Ishiwata, H., Shizuri, Y. and Yamada, K. (1983) Phytochemistry 22, 2839.
- Yamada, K., Sugiura, K., Shizuri, Y., Wada, H. and Hirata, Y. (1977) Tetrahedron 33, 1725.
- Klásek, A., Samek, Z. and Santavy, F. (1972) Tetrahedron Letters 941.
- 4. Beroza, M. (1951) J. Am. Chem. Soc. 73, 3656.
- Klásek, A., Santavy, F., Duffield, A. M. and Reichstein, T. (1971) Helv. Chim. Acta 54, 2144.
- Shizuri, Y., Yamada, K. and Hirata, Y. (1973) Tetrahedron Letters 741.
- Dominguez, X. A., Franco, R., Cano, G., Garcia, S., Zamudio, A., Amezcua, B. and Dominguez, X. A., Jr. (1979) Phytochemistry 18, 898.
- Monache, F. D., Pomponi, M., Marini-Bettolo, G. B., D'Albuquerque, I. L. and Lima, O. G. de (1976) Phytochemistry 15, 573.
- Sengupta, P., Chakraborthy, A. K., Duffield, A. M., Durham, L. J. and Djerassi, C. (1968) Tetrahedron 24, 1205.